УТВЕРЖДАЮ

Аннотация рабочей программы дисциплины Б1.Б.7 "Дискретная математика".

Цели освоения дисциплины	Целью изучения дисциплины является знакомство и освоение основных моделей и методов формализованного представления: теоретико-множественных, логических, графических; усвоение студентами теоретических основ дискретной математики и математической логики, составляющих фундамент ряда математических дисциплин и дисциплин прикладного характера. Задачами изучения данной дисциплины являются: развитие логического и алгоритмического мышления; овладение основными методами исследования и решения математических задач, основными численными методами математики и их
	простейшими реализациями на ЭВМ; выработку умения самостоятельно расширять математические знания и проводить математический анализ прикладных задач.
Место дисциплины в учебном плане	Дисциплина Б1.Б.7 «Дискретная математика» входит в Блок «Б1 дисциплины (модули)» Входные знания, умения и компетенции студентов должны соответствовать школьному уровню и знаниям и компетенциям, полученными после изучения дисциплин «Математика». Дисциплина «Дискретная математика» является предшествующей для следующих дисциплин: «Теория вероятностей и математическая статистика», «Информатика и программирование», «Исследование операций», «Математическое и имитационное моделирование», «Эконометрика», «Вычислительные системы, сети и телекоммуникации», «Информационные системы и технологии», «Проектирование информационных систем».
Формируемые компетенции	ОПК-2, ОПК-3
Знания, умения и навыки, формируемые в результате освоения дисциплины	В результате освоения дисциплины обучающийся должен знать: методы теории множеств, математической логики, алгебры высказываний, теории графов, теории автоматов, теории алгоритмов. уметь: разрабатывать эффективные алгоритмы и отлаживать программы с использованием современных компьютерных технологий. владеть:

комбинаторным, теоретико-множественным подходами к постановке и решению задач; навыками моделирования прикладных задач методами дискретной математики. Содержание дисциплины 1. Элементы теории множеств 1.1. Понятие множества. Способы задания множеств. Операции над множествами (объединение, пересечение, разность, симметрическая разность, дополнение) и их свойства. Диаграммы Эйлера-Венна 1.2. Декартово произведение множеств. Отображения множеств. Типы отображений (сюръекция, инъекция, биекция) 1.3. Алгебра бинарных отношений. Матричное представление отношений. Свойства бинарных отношений: рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность, антитранзитивность. Некоторые виды бинарных отношений: эквивалентности, толерантности, порядка 2. Элементы математической логики и алгебры высказываний 2.1. Элементарные булевы функции: дизьюнкция, конъюнкция, отрицание, импликация, штрих Шеффера, стрелка Пирса. Реализация функций формулами. Алгебра булевых функций 2.2. Полиномы Жегалкина, СКНФ и СДНФ. Функционально замкнутые классы и теорема Поста 2.3. Высказывания. Исчисление высказываний. Логика предикатов. Кванторы. Логические формулы 3. Элементы теории графов 3.1. Основные понятия теории графов. Геометрическая реализация графа. Полный граф с п вершинами. Дополнение графа и 0-граф. Реберный граф. Регулярный граф. Подграф графа. Типы подграфов: остовной подграф и паросочетание. Теоремы о степенях вершин графа. Маршруты, цепи, циклы в графе. Расстояния между двумя вершинами. Диаметр, радиус, центр графа 3.2. Связный и несвязный графы. Компоненты связности графа. Точки сочленения, мосты, разделяющие множества, разрезы графа. Количественные меры связности графа: цикломатическое число, вершинная и реберная связность. Теорема о связи чисел вершин, ребер и компонент связности графа. Матрицы графов: смежности, инциденций, расстояний, циклов, разрезов, Кирхгофа. Свойства матриц графа 3.3. Планарные и плоские графы. Внутренняя и внешняя грани плоского графа. Теорема Эйлера о связи чисел вершин, ребер и граней связного плоского графа. Количественные характеристики степени планарности графа. Гомеоморфизм графов 3.4. Ориентированные графы: основные определения. Матрицы смежности, инциденций, достижимости, расстояний орграфов. Задача поиска минимальных путей во взвешенном орграфе, ее интерпретация и алгоритм Данцига ее решения Виды учебной работы Лекции, самостоятельная работа, практические занятия.

Характеристика	При изучении курса используются следующие виды
образовательных	образовательных технологий:
технологий,	структурно-логические или заданные технологии, позволяющие
информационных,	поэтапную организацию постановки дидактических задач, выбора
программных и иных	способов их решения, диагностики и оценки полученных
средств обучения, с	результатов. Логика структурирования задач может быть разной
указанием доли	от простого к сложному, от теоретического к практическому или
аудиторных занятий,	наоборот;
проводимых в	тренинговые технологии, позволяющие использовать
интерактивных формах	определенные алгоритмы учебно-познавательных действий и
питерактивных формах	способов решения типовых задач в ходе обучения;
	диалоговые технологии, связанные с созданием коммуникативной
	среды, расширением пространства сотрудничества на уровне
	«преподаватель-студент», «студент- студент» в ходе постановки и
	решения учебно-познавательных задач.
	Доля занятий с использованием активных и интерактивных
	методов составляет 50%.
Формы текущего	В течение учебного года текущий контроль успеваемости
контроля успеваемости	студентов проверяется в ходе практических занятий,при
студентов	выполнении и оценке самостоятельных заданий, индивидуальных
	домашних работ, по результатам тестирования и тематических
	контрольных работ.
Виды и формы	Промежуточная аттестация проводится по результатам устного
промежуточной	опроса и выполнения домашних контрольных работ.
аттестации	